Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. In the western United States, prolonged drought, a warming climate, and historical fuel buildup have contributed to larger and more intense wildfires as well as to longer fire seasons. As these costly wildfires become more common, new tools and methods are essential for improving our understanding of the evolution of fires and how extreme weather conditions, including heat waves, windstorms, droughts, and varying levels of active-fire suppression, influence fire spread. Here, we develop the Geostationary Operational Environmental Satellites (GOES)-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire progression of large wildfires and create a product of hourly fire perimeters, active-fire lines, and fire spread rates. Using GOES-East and GOES-West geostationary satellite detections of active fires, we test the GOFER algorithm on 28 large wildfires in California from 2019 to 2021. The GOFER algorithm includes parameter optimizations for defining the burned-to-unburned boundary and correcting for the parallax effect from elevated terrain. We evaluate GOFER perimeters using 12 h data from the Visible Infrared Imaging Radiometer Suite (VIIRS)-derived Fire Event Data Suite (FEDS) and final fire perimeters from the California's Fire and Resource Assessment Program (FRAP). Although the GOES imagery used to derive GOFER has a coarser resolution (2 km at the Equator), the final fire perimeters from GOFER correspond reasonably well to those obtained from FRAP, with a mean Intersection-over-Union (IoU) of 0.77, in comparison to 0.83 between FEDS and FRAP; the IoU indicates the area of overlap over the area of the union relative to the reference perimeters, in which 0 is no agreement and 1 is perfect agreement. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery, where perimeters are available at intervals of 12 h or longer or at ad hoc intervals from aircraft overflights. This is particularly relevant when a fire spreads rapidly, such as at maximum hourly spread rates of over 5 km h−1. Our GOFER algorithm for deriving the hourly fire progression using GOES can be applied to large wildfires across North and South America and reveals considerable variability in the rates of fire spread on diurnal timescales. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates (https://doi.org/10.5281/zenodo.8327264, Liu et al., 2023).more » « less
-
Abstract. Fire is the dominant disturbance agent in Alaskan and Canadianboreal ecosystems and releases large amounts of carbon into the atmosphere.Burned area and carbon emissions have been increasing with climate change,which have the potential to alter the carbon balance and shift the regionfrom a historic sink to a source. It is therefore critically important totrack the spatiotemporal changes in burned area and fire carbon emissionsover time. Here we developed a new burned-area detection algorithm between2001–2019 across Alaska and Canada at 500 m (meters) resolution thatutilizes finer-scale 30 m Landsat imagery to account for land coverunsuitable for burning. This method strictly balances omission andcommission errors at 500 m to derive accurate landscape- and regional-scaleburned-area estimates. Using this new burned-area product, we developedstatistical models to predict burn depth and carbon combustion for the sameperiod within the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) coreand extended domain. Statistical models were constrained using a database offield observations across the domain and were related to a variety ofresponse variables including remotely sensed indicators of fire severity,fire weather indices, local climate, soils, and topographic indicators. Theburn depth and aboveground combustion models performed best, with poorerperformance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mhaacross all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1standard deviation) of carbon (C) per year, with a mean combustionrate of 3.13 ± 1.17 kg C m−2. Mean combustion and burn depthdisplayed a general gradient of higher severity in the northwestern portionof the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greatermean combustion. Our estimates are generally consistent with previousefforts to quantify burned area, fire carbon emissions, and their drivers inregions within boreal North America; however, we generally estimate higherburned area and carbon emissions due to our use of Landsat imagery, greateravailability of field observations, and improvements in modeling. The burnedarea and combustion datasets described here (the ABoVE Fire EmissionsDatabase, or ABoVE-FED) can be used for local- to continental-scaleapplications of boreal fire science.more » « less
-
Abstract. The evolution of organic aerosol (OA) and aerosol sizedistributions within smoke plumes is uncertain due to the variability inrates of coagulation and OA condensation/evaporation between different smokeplumes and at different locations within a single plume. We use aircraftdata from the FIREX-AQ campaign to evaluate differences in evolving aerosolsize distributions, OA, and oxygen to carbon ratios (O:C) between and withinsmoke plumes during the first several hours of aging as a function of smokeconcentration. The observations show that the median particle diameterincreases faster in smoke of a higher initial OA concentration (>1000 µg m−3), with diameter growth of over 100 nm in 8 h – despite generally having a net decrease in OA enhancementratios – than smoke of a lower initial OA concentration (<100 µg m−3), which had net increases in OA. Observations of OA and O:Csuggest that evaporation and/or secondary OA formation was greater in lessconcentrated smoke prior to the first measurement (5–57 min afteremission). We simulate the size changes due to coagulation and dilution andadjust for OA condensation/evaporation based on the observed changes in OA.We found that coagulation explains the majority of the diameter growth, withOA evaporation/condensation having a relatively minor impact. We found thatmixing between the core and edges of the plume generally occurred ontimescales of hours, slow enough to maintain differences in aging betweencore and edge but too fast to ignore the role of mixing for most of our cases.more » « less
-
Abstract Wildfire emissions are a key contributor of carbonaceous aerosols and trace gases to the atmosphere. Induced by buoyant lifting, smoke plumes can be injected into the free troposphere and lower stratosphere, which by consequence significantly affects the magnitude and distance of their influences on air quality and radiation budget. However, the vertical allocation of emissions when smoke escapes the planetary boundary layer (PBL) and the mechanism modulating it remain unclear. We present an inverse modeling framework to estimate the wildfire emissions, with their temporal and vertical evolution being constrained by assimilating aerosol extinction profiles observed from the airborne Differential Absorption Lidar‐High Spectral Resolution Lidar during the Fire Influence on Regional to Global Environments and Air Quality field campaign. Three fire events in the western U.S., which exhibit free‐tropospheric injections are examined. The constrained smoke emissions indicate considerably larger fractions of smoke injected above the PBL (f>PBL, 80%–94%) versus the column total, compared to those estimated by the WRF‐Chem model using the default plume rise option (12%–52%). The updated emission profiles yield improvements for the simulated vertical structures of the downwind transported smoke, but limited refinement of regional smoke aerosol optical depth distributions due to the spatiotemporal coverage of flight observations. These results highlight the significance of improving vertical allocation of fire emissions on advancing the modeling and forecasting of the environmental impacts of smoke.more » « less
-
Abstract. Fires emit sufficient sulfur to affect local and regional airquality and climate. This study analyzes SO2 emission factors andvariability in smoke plumes from US wildfires and agricultural fires, as well as theirrelationship to sulfate and hydroxymethanesulfonate (HMS) formation.Observed SO2 emission factors for various fuel types show goodagreement with the latest reviews of biomass burning emission factors,producing an emission factor range of 0.47–1.2 g SO2 kg−1 C.These emission factors vary with geographic location in a way that suggeststhat deposition of coal burning emissions and application ofsulfur-containing fertilizers likely play a role in the larger observedvalues, which are primarily associated with agricultural burning. A 0-D boxmodel generally reproduces the observed trends of SO2 and total sulfate(inorganic + organic) in aging wildfire plumes. In many cases, modeled HMSis consistent with the observed organosulfur concentrations. However, acomparison of observed organosulfur and modeled HMS suggests that multipleorganosulfur compounds are likely responsible for the observations but thatthe chemistry of these compounds yields similar production and loss rates asthat of HMS, resulting in good agreement with the modeled results. Weprovide suggestions for constraining the organosulfur compounds observedduring these flights, and we show that the chemistry of HMS can alloworganosulfur to act as an S(IV) reservoir under conditions of pH > 6 and liquid water content>10−7 g sm−3. This canfacilitate long-range transport of sulfur emissions, resulting in increasedSO2 and eventually sulfate in transported smoke.more » « less
-
Abstract The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) experiment was a multi‐agency, inter‐disciplinary research effort to: (a) obtain detailed measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites and ground‐based instruments, (b) make extensive suborbital remote sensing measurements of fire dynamics, (c) assess local, regional, and global modeling of fires, and (d) strengthen connections to observables on the ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power. From Boise, ID western wildfires were studied with the NASA DC‐8 and two NOAA Twin Otter aircraft. The high‐altitude NASA ER‐2 was deployed from Palmdale, CA to observe some of these fires in conjunction with satellite overpasses and the other aircraft. Further research was conducted on three mobile laboratories and ground sites, and 17 different modeling forecast and analyses products for fire, fuels and air quality and climate implications. From Salina, KS the DC‐8 investigated 87 smaller fires in the Southeast with remote and in‐situ data collection. Sampling by all platforms was designed to measure emissions of trace gases and aerosols with multiple transects to capture the chemical transformation of these emissions and perform remote sensing observations of fire and smoke plumes under day and night conditions. The emissions were linked to fuels consumed and fire radiative power using orbital and suborbital remote sensing observations collected during overflights of the fires and smoke plumes and ground sampling of fuels.more » « less
-
Abstract. Wildfire smoke is one of the most significant concerns ofhuman and environmental health, associated with its substantial impacts onair quality, weather, and climate. However, biomass burning emissions andsmoke remain among the largest sources of uncertainties in air qualityforecasts. In this study, we evaluate the smoke emissions and plumeforecasts from 12 state-of-the-art air quality forecasting systemsduring the Williams Flats fire in Washington State, US, August 2019, whichwas intensively observed during the Fire Influence on Regional to GlobalEnvironments and Air Quality (FIREX-AQ) field campaign. Model forecasts withlead times within 1 d are intercompared under the same framework basedon observations from multiple platforms to reveal their performanceregarding fire emissions, aerosol optical depth (AOD), surface PM2.5,plume injection, and surface PM2.5 to AOD ratio. The comparison ofsmoke organic carbon (OC) emissions suggests a large range of daily totalsamong the models, with a factor of 20 to 50. Limited representations of thediurnal patterns and day-to-day variations of emissions highlight the needto incorporate new methodologies to predict the temporal evolution andreduce uncertainty of smoke emission estimates. The evaluation of smoke AOD(sAOD) forecasts suggests overall underpredictions in both the magnitude andsmoke plume area for nearly all models, although the high-resolution modelshave a better representation of the fine-scale structures of smoke plumes.The models driven by fire radiativepower (FRP)-based fire emissions or assimilating satellite AODdata generally outperform the others. Additionally, limitations of thepersistence assumption used when predicting smoke emissions are revealed bysubstantial underpredictions of sAOD on 8 August 2019, mainly over thetransported smoke plumes, owing to the underestimated emissions on7 August. In contrast, the surface smoke PM2.5 (sPM2.5) forecastsshow both positive and negative overall biases for these models, with mostmembers presenting more considerable diurnal variations of sPM2.5.Overpredictions of sPM2.5 are found for the models driven by FRP-basedemissions during nighttime, suggesting the necessity to improve verticalemission allocation within and above the planetary boundary layer (PBL).Smoke injection heights are further evaluated using the NASA LangleyResearch Center's Differential Absorption High Spectral Resolution Lidar(DIAL-HSRL) data collected during the flight observations. As the firebecame stronger over 3–8 August, the plume height became deeper, with aday-to-day range of about 2–9 km a.g.l. However, narrower ranges arefound for all models, with a tendency of overpredicting the plume heights forthe shallower injection transects and underpredicting for the days showingdeeper injections. The misrepresented plume injection heights lead toinaccurate vertical plume allocations along the transects corresponding totransported smoke that is 1 d old. Discrepancies in model performance forsurface PM2.5 and AOD are further suggested by the evaluation of theirratio, which cannot be compensated for by solely adjusting the smoke emissionsbut are more attributable to model representations of plume injections,besides other possible factors including the evolution of PBL depths andaerosol optical property assumptions. By consolidating multiple forecastsystems, these results provide strategic insight on pathways to improvesmoke forecasts.more » « less
-
null (Ed.)Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth’s radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO 2 ) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime ( τ HPMTF < 2 h) and terminates DMS oxidation to SO 2 . When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO 2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO 2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.more » « less
-
Abstract Aerosol mass extinction efficiency (MEE) is a key aerosol property used to connect aerosol optical properties with aerosol mass concentrations. Using measurements of smoke obtained during the Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) campaign we find that mid‐visible smoke MEE can change by a factor of 2–3 between fresh smoke (<2 hr old) and one‐day‐old smoke. While increases in aerosol size partially explain this trend, changes in the real part of the aerosol refractive index (real(n)) are necessary to provide closure assuming Mie theory. Real(n) estimates derived from multiple days of FIREX‐AQ measurements increase with age (from 1.40 – 1.45 to 1.5–1.54 from fresh to one‐day‐old) and are found to be positively correlated with organic aerosol oxidation state and aerosol size, and negatively correlated with smoke volatility. Future laboratory, field, and modeling studies should focus on better understanding and parameterizing these relationships to fully represent smoke aging.more » « less
An official website of the United States government
